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ERASURE CODING FOR FAULT-OBLIVIOUS LINEAR SYSTEM
SOLVERS∗
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Abstract. Dealing with faults is an important problem as parallel and distributed systems scale
to millions of processing cores. Traditional methods for dealing with faults include checkpoint-restart,
active replicas, and deterministic replay. Each of these techniques has associated resource overheads
and constraints. In this paper, we propose an alternate approach to dealing with faults based
on input augmentation. This approach, which is an algorithmic analog of erasure-coded storage,
applies a minimally modified algorithm on the augmented input to produce an augmented output.
The execution of such an algorithm proceeds completely oblivious to faults in the system. In the
event of one or more faults, the real solution is recovered using a rapid reconstruction method
from the augmented output. We demonstrate this approach on the problem of solving sparse linear
systems using a conjugate gradient solver, where we present input augmentation and output recovery
techniques. Through simulations, we show that our approach can be made oblivious to a large number
of faults with low computational overhead. Specifically, we demonstrate cases where a single fault
can be corrected with less than 10% overhead in time, and even in extreme cases (fault rates of 20%),
our approach is able to compute a solution with reasonable overhead.
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1. Introduction. The next generation of parallel and distributed systems are
projected to scale to millions of processing cores and beyond. In this regime, hardware
and software faults present major challenges for scalable execution of programs. We
consider solving n n× n nonsingular linear system

Ax = b(1.1)

in a computing environment with faults.
Our contribution in this paper is the design of a new type of method for solving

(1.1), which we call an erasure-coded algorithm. At the core of our concept is an
algorithm that allows us to recover the correct solution to the problem even if some
of the computational units involved in the solution process fail during the execution
of the algorithm. We use an abstraction of a computational unit failing wherein
specific components of a vector become fixed or stuck and can no longer be changed.
This emulates the behavior of a distributed system where a node dropped out of the
computation. The outcome of our effort is a fault-oblivious solution procedure. More
specifically, given system (1.1), we design an augmented system:

Ãx̃ = b̃(1.2)

∗Submitted to the journal’s Software and High-Performance Computing section September 28,
2015; accepted for publication (in revised form) September 12, 2016; published electronically February
22, 2017.

http://www.siam.org/journals/sisc/39-1/M104151.html
Funding: This work was supported in part by DOE award DE-SC0014543 and ARO Award

1111691-CNS.
†Department of Computer Science, Purdue University, West Lafayette, IN 47907 (yaozhu@purdue.

edu, dgleich@purdue.edu, ayg@purdue.edu).

C48

http://www.siam.org/journals/sisc/39-1/M104151.html
mailto:yaozhu@purdue.edu
mailto:yaozhu@purdue.edu
mailto:dgleich@purdue.edu
mailto:ayg@purdue.edu


ERASURE-CODED ITERATIVE METHODS C49

together with a solution strategy, such that using the solution strategy to solve (1.2)
in an environment with faults would have the following properties:

1. Deterministic finite termination. The solution process terminates in finite
steps. When it terminates, it indicates one and only one of the two cases: (i)
it fails to solve (1.2) to a specified precision; (ii) an approximate solution x̃ to
(1.2) within the specified precision has been found.

2. Recoverability of the intended solution. In case (ii) above, we are able to recover
the intended solution x to (1.1) from x̃ through an inexpensive computation.

Our specific design relies on a linear coding of the input system (1.1). For this
reason, we refer to (1.2) as the encoded system, and the input system (1.1) as the raw
system. There are three major components of our approach, which we discuss in the
next three sections.

• The system abstraction—section 3. We define the types of faults and their
semantics that our coded linear solver can handle.

• The encoding scheme—section 4. We add a set of rows and columns to the
matrix to render the new linear system singular, but consistent. It remains
this way for up to k componentwise faults in the solution vector x̃.

• The solution process and recovery scheme—section 5. Our solution process
relies on a conjugate gradient algorithm. We show that when this algorithm
terminates, it does so at a consistent solution to the encoded system. We then
describe how to recover the true solution x in light of the encoding.

These three components are highly interrelated, and our final design integrates the
properties of all of them. Thus, we may leave particular details unspecified until future
sections when relevant choices become obvious.

For simplicity, in this manuscript, we restrict ourselves to the case where A is
symmetric positive definite (SPD) and validate the central concept in a synthetic
environment with simulated faults. There are a number of important practical and
implementational issues with this technique that need to be addressed in the future
before it can offer a ready-to-deploy solution. Nevertheless, our initial results provide
a promising proof of concept. We report results on the efficiency of our encoding in
section 6. Our main findings are that the encoded system takes minimal additional
work to solve in the presence of a fault. In the presence of a substantial number of
faults (20% of components failing), it takes 8× the number of iterations of a no-fault
linear solver. To achieve this, we use a new linear system that takes approximately
40% more iterations to solve if no faults occur. This demonstrates the potential for
substantial savings, compared to a checkpoint-restart, deterministic replay, or active
replica fault tolerant system.

2. Review of existing literature. There are a variety of existing techniques
for fault tolerance that yield the three properties we need. These techniques can be
broadly classified as system supported or algorithmic.

2.1. System-supported fault tolerance. System-supported fault tolerance
schemes include checkpoint-restart, active replicas, and deterministic replay. Checkpoint-
restart schemes involve the overhead of both consistent checkpointing and I/O
(e.g., Bougeret et al. (2011)). These schemes are particularly difficult on ultrascale
platforms, where I/O capacity and bandwidth are both at a premium relative to the
compute capability and system memory. Furthermore, the asynchronous nature of many
highly scalable algorithms makes it costly to identify consistent checkpoints and to per-
form associated rollbacks. Variants of these schemes include in-memory checkpointing,
use of persistent storage (flash memory), and application-specified checkpoints.
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Active replicas, commonly used in mission-critical real-time applications, execute
multiple replicas of each task (Schneider, 1990). Failures are detected and replicas
are managed to support real-time constraints. While the runtime characteristics of
these schemes can be controlled (e.g., through worst-case runtime estimation), the
resource overhead of such schemes are high, since tolerating a k-process failure among
p processes requires (k + 1)p active processes. This cost is significant—as an example,
tolerating 10 faults in an ensemble of 1000 cores (a 1% error rate) requires 11,000
processes!

Yet other systems such as MapReduce (Dean and Ghemawat, 2004) use the concept
of deterministic replay. In this model, computation proceeds in steps with checkpoints
at the end of each step. Processes are monitored within the steps, and in the event of
a failure, the computation associated with the failed process is replayed at an alternate
node. While this model has been successfully applied to a large set of wide-area
distributed applications, it has the drawbacks of staged execution and increased job
makespan, particularly when the number of faults is large. Furthermore, checkpointing
to persistent storage (typically a distributed file system) can add significant overhead,
particularly when the steps are small.

2.2. Algorithm-based fault tolerance. There are a number of possibilities for
algorithm-based fault tolerance, depending on the features offered by the architecture
and the types of errors handled.

Selective reliability. Perhaps the simplest model is selective reliability, where algo-
rithms are programmed to be tolerant to faults in certain regions of the computations.
Bridges et al. (2012) used this idea for an iterative inner-outer Krylov solver for
Ax = b. The outer recurrence in a Krylov solver was assumed to be reliable, while
an inner preconditioned iteration could produce faults, including soft errors. For soft
errors, this setting then involves the framework of flexible Krylov subspace methods,
like flexible GMRES (Saad, 1993, Eshof and Sleijpen, 2004, Simoncini and Szyld,
2003a,b). In general, these schemes require deep algorithmic and analytical insight
to quantify fault tolerance properties and associated overheads. For instance, in the
flexible GMRES framework, the magnitude of perturbations needs to be controlled to
maintain convergence, although the perturbations can happen anywhere in the result
of a numerical operation. Recent work on these problems focuses on new methods to
generate realistic and challenging soft errors (Elliott, Hoemmen, and Mueller, 2015) to
stress the methods.

Algorithmic checksumming and erasure coding. The result most closely related to
ours is due to Huang and Abraham (Huang and Abraham, 1984). They consider a
similar idea for detecting soft errors in dense matrix computations. To do so, they
add a checksum row or column to a matrix to identify a single error in a dense matrix
computation. For instance, for the computation of C = AB, let

Ã =

[
A

eTA

]
, B̃ =

[
B Be

]
, C̃ = ÃB̃ =

[
AB ABe

eTAB eTABe

]
.

(Here e is the vector of all ones.) Single entry soft errors can be identified by searching
for discrepancies with the checksum rows and columns in C̃. This result motivated a
line of research (Chen et al., 2005, Chen and Dongarra, 2005, 2008, Bosilca et al., 2009,
Chen, 2009, 2011) on generalizing the concept and dealing with fail-stop failures. For
instance, Chen et al. (Chen et al., 2005, Chen and Dongarra, 2005) consider the use of
real-valued matrices to construct error codes for fault tolerance in matrix computations.
This concept is extended to the computation of parallel matrix multiplication (Chen
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and Dongarra, 2008), which motivates the development of new coding matrices for
multiple errors (Chen, 2009). Some requirements on the coding matrices were noted
by Bosilca et al. (2009). These ideas are subsequently studied in the context of iterative
methods (Chen, 2011), where the focus is on efficiently emulating a checkpoint-restart
system, where the efficiently computed checksums are used instead of the checkpoints
(if the same information isn’t available due to the matrix structure).

Comparison with our work. In comparison with the selective reliability work, our
erasure-coded approach only requires the encoding and final decoding to be reliable,
and these involve a small amount of work. Our current setting is designed to handle
fail-stop failures, and we plan to investigate soft errors in the future. In comparison
with the algorithm checksum work, our ideas explore the use of coding schemes in
iterative algorithms in an entirely different manner, where we clearly establish a general
framework for these ideas in iterative methods. This involves concepts related to
Kruskal rank, as mentioned in previous work on algorithmic fault tolerance (Bosilca
et al., 2009). Prior work in fault tolerant iterative methods using coding involves some
similar ideas (Chen, 2011), but in the context of algorithms that restore the state on a
per iteration basis instead of solution recovery after the entire computation, as in our
case.

3. Assumptions of the system abstraction. We begin our technical descrip-
tion by stating our assumptions regarding the underlying execution environment, so
that we can give precise algorithms in subsequent sections. We view the execution
of the algorithm in two stages—the setup phase and the execution phase. The setup
phase consists of the input augmentation step of the algorithm. During this phase, we
assume that a small amount of reliable work can be done. In the presence of faults,
this can be achieved using more expensive fault tolerance techniques such as replicated
execution or deterministic replay. Since this step is a very small fraction of the overall
computation (less than 1% for typical systems), the overhead is not significant. This
is equivalent to the selected reliability model of Bridges et al. (2012).

The execution phase of the algorithm corresponds to the solve over the augmented
system. In this phase, we assume an ensemble of message passing processes executing
the solver. We also assume fail-stop failures, i.e., in the event of a fault, a process
halts. No further messages are received from this process by any of the other processes.
All of the other processes involved are able to reliably detect this halt as well. We do
not assume any distribution of temporal faults, only that the total number of faults is
bounded.

Indeed there are other fault models as well, ranging from transient (soft) faults
to Byzantine behavior. Soft faults manifest themselves in the form of erroneous data.
These data, when incorporated into data at other processes, can lead to cascading error
in programs. In principle, our proposed method can be extended to these other fault
classes using existing fault detection schemes. For instance, messages signed with a
checksum allow us to detect on-the-wire errors. Asserts in the program, corresponding
to predicates whose violation signifies an error can be used to detect soft errors in
processes. If these asserts are further extended to algorithmic invariants, additional
errors can be detected (Elliott, Hoemmen, and Mueller, 2014). When a soft error is
detected at a process, the process is killed, once again resulting in a fail-stop failure.
Asserts work similarly when Byzantine failures are detected. Thus, a combination of
tolerance to fail-stop failures with fault detection techniques allows us to deal with
a broad set of faults, although we focus on simple fail-stop cases here and do not
consider the more general setting.
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Furthermore, we note that there are many system-level software issues associated
with the proposed fault-oblivious paradigm and this fault model. For instance, in many
APIs (such as MPI), a single process failure can cause the entire program to crash.
In yet other scenarios, a crashed process can cause group communication operations
(reductions, broadcasts, etc.) to block. These kinds of program behaviors would not
allow our proposed scheme to work. We assume program behavior in which faulty
processes simply drop out of the ensemble while the rest continue. We leave the (non-
trivial) design of these fault-oblivious APIs to future work and focus on the feasibility
and superior performance of the erasure-coded computation scheme for linear solvers
in this manuscript. For an example of some details for related approaches, see Wilke
et al. (2015), Gamell et al. (2015) where they use key-value semantics overlayed on
the MPI protocol and a whole-scale replacement to MPI to enable fault tolerant APIs.

4. Encoding scheme. We begin by formalizing some notation. Let x∗ be the
true solution of the raw linear system Ax = b. Let k ≤ n be the number of allowed
faults during its execution. Let E ∈ Rn×k be an encoding matrix that we’ll specify
completely, shortly. We design the augmented matrix Ã ∈ R(n+k)×(n+k) as follows:

Ã =

[
A AE
ETA ETAE

]
.(4.1)

We choose the encoding of x∗ to be an embedding into Rn+k, i.e.,

x̃∗ =

[
x∗

0

]
.(4.2)

Accordingly, the encoding of b is given by

b̃ = Ãx̃∗ =

[
b
ETb

]
.(4.3)

4.1. Basic properties. We now establish a few properties of these systems in
terms of their rank, a characterization of the solutions, and the semidefiniteness of Ã.

Proposition 4.1. A null space basis of Ã is
[

E
−Ik

]
.

Proof. From the design of Ã in (4.1) and A being SPD, we have rank(Ã) = n.
Thus the null space has dimension k. Then, by inspection, Ã

[
E
−Ik

]
= 0 and

[
E
−Ik

]
has column rank k.

As a corollary of the above proposition, we have the following proposition regarding
the nonambiguity of the solution encoding (4.2).

Proposition 4.2. Let [ yz ] be any solution of (1.2) where y ∈ Rn. Once z ∈ Rk

is specified, then the components of y are uniquely determined. Moreover, if z = 0,
then y = x∗.

Proof. Note that
[
x∗

0

]
is a solution to (1.2). Thus, any solution to (1.2) can be

written as: [
y
z

]
=

[
x∗

0

]
+

[
E
−Ik

]
a

for a unique a ∈ Rk. Due to the nonzero structure, we have a = −z. Hence, y is
uniquely determined as x∗ −Ez. The final statement follows from z = 0.
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This theorem will be important because if we have a solution [ yz ], then to recover
x∗ we need to compute y + Ez only. As we establish the remainder of our framework,
this will give a straightforward recovery algorithm.

We now prove that Ã, as given in (4.1), is symmetric positive semidefinite (SPSD).

Proposition 4.3. If A is SPD, then Ã as defined in (4.1) is SPSD.

Proof. Let the Cholesky factorization of A be A = LLT . Again, by inspection,
we have

Ã =

[
L

ETAL−T

] [
L

ETAL−T

]T
.

4.2. Solution degeneracies and faults. The matrix Ã has rank n, despite
having n+ k rows and columns. We now show how a specific use of this degeneracy
allows us to have fault tolerant solutions to (1.2). Let x̃ ∈ R(n+k) be the encoded
solution. For the sake of clarity in presentation, we assume that faults only occur
within the components of x̃1:n, i.e., the redundant components x̃(n+1):(n+k) introduced
by the encoding cannot be faulty. Please note that this is not a limitation of our
scheme, if faults occur in the components of the solution corresponding to the encoding,
it suffices to set these components to zero and proceed. (This is what we assume
occurs on failure in section 5.) In the case that the encoded components fail, then, it
simply corresponds to reduced redundancy so that if m < k components fail in the
encoding, we can only tolerate k−m failures in the actual components of the solution.

We let the set of faulty indices be F ⊂ [n]. We constrain the cardinality |F| ≤ k.
Let C be the set of nonfaulty (or correct) components. Without loss of generality, we
consider the system (1.2) in three components corresponding to the correct, faulty,
and redundant components of the solution. This is equivalent to a permutation, after
which we have that the solution is

(4.4) x̃ =

c
f
r

 , correct = x̃C ,
faulty = x̃F ,
redundant.

The overall permuted system is:A11 A12 Z1

AT
12 A22 Z2

ZT
1 ZT

2 R

c
f
r

 =

 b1

b2

ETb

 where


Z1 = A11E1 + A12E2,

Z2 = AT
12E1 + A22E2,

R = ETAE.

As our solver progresses, the components in f become “stuck” at some intermediate
values as faults occur. We describe the semantics of these faults more formally in
the next section (section 5). The goal of this section is to show that we can recover
solutions even when setting f to some arbitrary value.

For our erasure-coded solver, we need a condition on the matrix E such that
1. there is always a solution to (1.2) for any f as long as |F| ≤ k (Proposition 4.5);
2. given any solution computed with faulty components (|F| ≤ k), we can extract

a solution to (1.2) (Proposition 4.6).
The condition on the matrix E that is essential to these results is the Kruskal rank.
Recall the definition.

Definition 4.4 (Kruskal rank (Kruskal, 1977)). The Kruskal rank, or k-rank,
of a matrix is the largest number k such that every subset of k columns is linearly
independent.
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Notice that the condition for a matrix to be of Kruskal rank k is much stronger
than being rank k. The following proofs require that the Kruskal rank of ET is k in
order to handle up to k faults. Some intuition for this requirement is that we need
the matrix E to encode redundancies to any possible faults with a number up to k.
Recovering the solution will require us to invert a matrix for the components where
the solution was faulty and, hence, we need all possible subsets of k rows of E to
be invertible—giving us the Kruskal rank condition. This condition was also noted
by Bosilca et al. (2009) in the context of coding for matrix multiplication. We now
present these two results formally.

Proposition 4.5. Let ET ∈ Rk×n have Kruskal rank k and let F be an arbitrary
subset of [n] with |F| ≤ k. Then there exists a solution to (1.2) with x̃F = f for any f .
When |F| = k, such a solution is unique.

Proof. Note that any solution of (1.2) has the form[
x∗

0

]
+

[
E
−I

]
a

for some a ∈ Rk. Let us permute this solution as in (4.4):c
f
r

 =

x∗1
x∗2
0

+

E1

E2

−I

a.

It suffices to show that there exists a such that f = x∗2 + E2a. Because the rows of
E2 correspond to the faulty components, this is a set of |F| columns from ET . These
columns are linearly independent by the Kruskal rank condition. Thus, there exists a
solution to this underdetermined linear system. If |F| = k, then the system is square
and nonsingular, so the vector a is unique.

According to our fault model, as faults occur during an iterative process, the
components of f become stuck, because the processes responsible for updating them
have dropped out of the computation. Thus, the actual system that we solve is what
we call a purified system consisting of only nonfaulty components:

(4.5)

[
A11 Z1

ZT
1 R

] [
c
r

]
=

[
b1

ETb

]
−
[
A12

ZT
2

]
f .

By Proposition 4.5, if the encoding matrix ET has Kruskal rank k, there exists a
solution to the purified subsystem (4.5) from a solution to (1.2) with xF = f fixed.

We now ask the reverse question. Suppose [ cr ] is any solution to (4.5), will
[
c
f
r

]
be

a solution to (1.2) (under the permutation)? The following proposition shows the
answer is yes. The reason we need this proof is that there are many possible solutions
to the purified subsystem. We need to establish that all solutions to (4.5) with f fixed
will lead us to a full solution to (1.2).

Proposition 4.6. Let ET ∈ Rk×n have Kruskal rank k. Let [ cr ] be any solution

to the purified system (4.5) with f fixed and where |F| ≤ k. Then
[
c
f
r

]
is a solution to

(1.2).

Proof. This proof is equivalent to checking whether the following equation is
satisfied by the purified solution:

(4.6)
[
AT

12 Z2

] [c
r

]
= b2 −A22f .
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We establish this fact algebraically from the solution of the purified system. First
note that ET

2 is a k-by-|F| matrix with full column rank, and thus it has a left inverse
(ET

2 )† = (E2E
T
2 )−1E2. Now consider the two equations in the purified system:

A11c + Z1r = b1 −A12f ,(4.7)

ZT
1 c + Rr = ETb−ZT

2 f .(4.8)

The result of (4.8)−ET
1 (4.7) is

ET
2 A

T
12c + ET

2 Z2r = ET
2 b2 −ET

2 A22f .

To complete the proof, we premultiply this equation by left inverse (ET
2 )†.

5. The solution process and recovery scheme. Proposition 4.3 establishes
Ã being SPSD when A is SPD. Thus we can apply the conjugate gradient (CG)
method to solve a singular but consistent linear system (1.2) (Ipsen and Meyer, 1998).
Specifically, we use the following two-term recurrence form of CG (Meurant, 2006).

Algorithm 1 Fault oblivious CG with a two-term recurrence. When we notice a fault,
we set βt = 0 at that iteration.

1: Let x0 be the initial guess and r0 = b−Ax0, β0 = 0.
2: for t = 0, 1, . . . until convergence do
3: βt = (rt, rt)/(rt−1, rt−1)
4: pt = rt + βtpt−1
5: qt = Apt

6: αt = (rt, rt)/(qt,pt)
7: xt+1 = xt + αtpt

8: rt+1 = rt − αtqt

9: end for

We consider the setting when Algorithm 1 is executed in a distributed environment.
For the encoded system (1.2), this means the encoded matrix Ã and the encoded
vectors are distributed among multiple processes by rows. Let the index set associated
with process i be Ii, then [n+k] =

⋃
i Ii. According to our fault model, the operations

of Algorithm 1 affected by faults in a distributed environment are the aggregation
operations—inner products and the matrix-vector multiplication Apt. Thus our
erasure-coded CG can be defined by specifying the semantics of these two aggregation
operations under faults. At the tth iteration of erasure-coded CG, let the set of failed
processes be Pt. Then the set of faulty indices is Ft =

⋃
i∈Pt
Ii. We assume that each

viable process can detect the breakdown of any process that should be sending it data
on their local variables, which we call neighbor processes. Based on this assumption,
we specify the semantics of the two aggregation operations as follows:

• Inner products (rt, rt) and (qt,pt). The viable processes carry out the all-
reduce operation by skipping the faulty components Ft in the vectors:

(rt, rt) =
(
(rt)[n+k]\Ft

, (rt)[n+k]\Ft

)
,(5.1)

(qt,pt) =
(
(qt)[n+k]\Ft

, (pt)[n+k]\Ft

)
.

Furthermore, we require no reuse of aggregation operation results. This means
that when computing αt, (rt, rt) is recomputed simultaneously with (qt,pt).
Similarly when computing βt, (rt−1, rt−1) is recomputed simultaneously with
(rt, rt). For this purpose, we have to maintain both rt and rt−1.
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• Matrix-vector multiplication qt = Apt. A viable process carries out its
local aggregation operation for computing AIi,:pt by skipping the faulty
components Ft in pt:

AIi,:pt = AIi,[n+k]\Ft
(pt)[n+k]\Ft

.

Given the above semantics on aggregation operations, the erasure-coded CG on x̃ can
be effectively considered as an iterative solution process on the subsystem defined on
x̃[n+k]\Ft

, as given in (4.5). Note that the right-hand side of the purified subsystem
(4.5) depends on f , the snapshot value of x̃Ft

. For this reason, we require each
viable process to cache the freshest snapshot values it have received from its neighbor
processes.

Another technical issue we need to consider when faults happen is the update to
the search direction pt. In fault-free CG with exact arithmetic, we have (rt,pt−1) = 0.
However, given the semantics of inner product, as defined in (5.1), the orthogonality of
rt and pt−1 will generally not hold. When we observe a fault, we truncate the update
pt = rt + βtpt−1 to be

pt = rt.

This corresponds to a reset of the Krylov process.
We now consider the recovery of the solution to the raw system (1.1). Suppose

the erasure-coded CG converges on the encoded system (1.2) after T iterations. Let
the encoding matrix ET ∈ Rk×n have Kruskal rank k. Let F ∈ [n] be the set of all
faulty indices upon convergence such that |F| ≤ k. In erasure-coded CG, the snapshot
value f of the faulty components x̃F are cached on the viable processes. Because of
the semantics of aggregation operations, the erasure-coded CG solves the purified
subsystem defined in (4.5). Let the returned approximate solution be [ cr ]. According
to Proposition 4.6, then

x̃ =

c
f
r


is a solution to the encoded system (1.2). Then, by Proposition 4.1, we can recover
the intended solution to the raw system (1.1) through the equation

(5.2)

[
x∗

0

]
= x̃ +

[
E
−Ik

]
r,

and by Proposition 4.2, the recovery equation (5.2) is nonambiguous.

6. Experimental results. In this section, we report on experimental results
with varying degrees of faults and the associated overhead. The main purpose of
these experiments is to demonstrate the feasibility of the concept of an erasure-
coded linear system solver. We also empirically investigate the relationship between
the condition number of the encoded system and the raw system. Through these
experiments, we also identify critical research problems to be solved in order to
realize the idea of an erasure-coded linear solver in a distributed setting. We do
not intend these experiments to be exhaustive and comment on a few limitations in
the future work section. In the interest of making our experiments reproducible, we
provide the original experimental codes as well as our numerical results, at the website:
https://github.com/dgleich/erasure-coded-cg.

https://github.com/dgleich/erasure-coded-cg
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Table 1
Test matrices.

Matrix n nnz Type

Ltridiag500 500 1498 1D model problem
mhdb416 416 2312 electromagnetics problem

nos3 960 15, 844 structural problem

6.1. Experiment design. In our experiments, we use three SPD test matri-
ces, with their sizes (n), number of nonzeros (nnz), and types shown in Table 1.
Ltridiag500 is a 500 × 500 one-dimensional (1D) model matrix with the stencil
[ −1 2 −1 ]. mhdb416 (Kooper et al., 1995) and nos3 (Duff, Grimes, and Lewis,
1989) are from the University of Florida Sparse Matrix Collection (Davis and Hu,
2011). We implemented a MATLAB code to simulate the erasure-coded CG described
in section 5. In our current simulation, we inject fault components only at the end
of a CG iteration. Furthermore, we assume that all the faults happen at the same
time. This is a limited simulation, but it suffices to demonstrate the feasibility of the
fundamental idea; we are planning more realistic experiments in true parallel settings
in the future. For a given number of tolerable faults, k, we design the n× k encoding
matrix E as a random Gaussian matrix scaled by 1√

n
, i.e.,

E =
1√
n
Ē, Ēij ∼ N (0, 1), i = 1, . . . , n, j = 1, . . . , k.

This matrix has Kruskal rank k, with high probability. This choice has also been
proposed previously in the context of real-valued erasure codes (Chen and Dongarra,
2005, Chen, 2009). This choice does increase the number of nonzeros in the matrices,
which results in an increase in the per iteration time. At the moment, however, we are
focused on the theoretical aspects and bounding the number of iterations. In future
efforts aimed at deploying these concepts in a parallel setting, we plan to use sparse
encoding matrices that will not result in a significant increase in nonzeros (see the
discussion in the future work section).

6.2. Experimental results. For each test matrix in Table 1, we run an erasure-
coded CG simulation code for k = 0, 1, 20%n number of faults. The right-hand side b
of the raw system (1.1) is produced from random solution vectors x in (0, 1)n. We set
the number of maximum CG iterations to be 10n, and monitor the convergence using
the stopping criterion ‖rt‖2 ≤ 10−10. For each value of k, the k fault components are
randomly selected from [n]. These fault components are injected simultaneously at
the end of one randomly selected CG iteration that is no larger than 0.25n. We refer
to this CG iteration as the fault point. In Figures 1–3, we plot the residual norm
versus CG iteration for the three test matrices; and from left to right for k = 0, 1, 20%n.
The fault point is marked by the red cross.

To evaluate the quality of the recovered solution x∗, we compute the relative
residual achieved by x∗ on the raw system (1.1):

‖b−Ax∗‖2
‖b‖2

.

We summarize the number of iterations and relative residuals on the raw system for
three test matrices in Tables 2–4. We observe that on Ltridiag500 and nos3, when
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Fig. 1. Ltridiag500 convergence. From left to right k = 0, 1, 20%. The fault point is marked by
the red cross.
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Fig. 2. mhdb416 residual norm. From left to right k = 0, 1, 20%. The fault point is marked by
the red cross.
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Fig. 3. nos3 residual norm. From left to right k = 0, 1, 20%. The fault point is marked by the
red cross.

there is only 1 fault, the erasure-coded CG can recover a solution with almost the same
quality as if there is no fault, with a comparable number of iterations. When there
are 20% fault components, the erasure-coded CG can still recover an approximate
solution with good quality, although the number of iterations increases substantially.
In contrast to Ltridiag500 and nos3, on mhdb416, the erasure-coded CG reaches the
maximum number of iterations (i.e., 10n) for all three values of k. Comparing the
solution quality of k = 0 to those of k = 1, 20%n in Table 3 indicates more iterations
are required for the latter two cases.
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Table 2
Results on Ltridiag500.

k Iteration number Relative residual on raw system

0 500 1.39 × 10−14

1 540 3.76 × 10−15

20% 2640 3.72 × 10−11

Table 3
Results on mhdb416.

k Iteration number Relative residual on raw system

0 4160 1.19 × 10−9

1 4160 1.47 × 10−5

20% 4160 2.09 × 10−6

Table 4
Results on nos3.

k Iteration number Relative residual on raw system

0 312 3.51 × 10−14

1 524 4.09 × 10−14

20% 2581 1.91 × 10−13

7. Effects on conditioning. The previous experiments show that the number of
iterations can vary with the size of the encoding block. We now empirically investigate
one aspect of this property. For this study, recall that the runtime of the CG solver can
be bounded by the spectral condition number of the matrix (Meurant, 2006, Theorem
2.30), as well as the dimension of the matrix. Both measures increase as a result of our
encoding procedure. In the next set of experiments, we show the impact of encoding
on the condition numbers to understand this effect.

For these experiments, we are only concerned with the condition number of the
matrix, and not the condition number associated with the problem. The matrix-
condition number provides an upper bound on the condition number of the problem of
solving a linear system. In this case, the linear system that results from the encoding
procedure has additional structure that may enable a more refined conditioning analysis,
but we leave this to future work.

Given a square matrix A, its spectral condition number is based on the largest
and smallest nonzero singular values, σmax and σmin, of A:

κ(A) = σmax/σmin.

In the following results, κ will denote the condition number of the raw system and
κ′ will denote the condition number of Ã. We are primarily concerned with the
ratio κ′/κ, because this reflects the impact of the erasure coding on the spectral
condition number. In all of our tests, this ratio was positive, showing that our
procedure increases the condition number of the matrix. Note that if κ′/κ = σ then,
based on (Meurant, 2006, Theorem 2.30), we expect CG to take approximately

√
σ

additional iterations for the encoded problem. (This holds when κ is large and we use
log((

√
κ− 1)/(

√
κ+ 1)) = log(1− 2/(

√
κ+ 1)) ≈ log(1− 2/

√
κ) = −2/

√
κ to estimate

the number of iterations.)
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Fig. 4. (At left) The ratio between the condition number of the encoded matrix κ′ and the
original system κ remains bounded as the matrix size (n) increases and when we add encoding
matrices to tolerate k% of entries possibly failing. (At right) The actual number of iterations taken
by the CG method shows the effect of the change in condition number and this also remains bounded.
The matrix used in this study is an n-by-n tridiagonal Laplacian matrix with coefficients −1, 2,−1.
The thick line shows the median over 25 trials and the shaded region shows the maximum and
minimum results.

In the first experiment, we study the change in condition number as the matrix
size grows for the tridiagonal matrix with stencil

[
−1 2 −1

]
, and as the percentage

of faults varies from 1% of the matrix size to 20% of the matrix size. The results
are shown in Figure 4 (left). Because we use random encoding matrices, we show
a distribution of results over 25 trials, and focus on the maximum, minimum, and
median results. These results show that κ′/κ appears to converge to a constant as the
matrix size increases and only depends on the fraction of redundancies. With k = 5%
of n, for instance, κ′/κ appears to converge to 1.6. This means that we expect CG to
take

√
1.6 ≈ 1.27 times more iterations with this number of columns.

In the right portion of Figure 4, we test this hypothesis and find that CG takes
slightly fewer than the expected number of iterations in the regime we studied. With
k = 5% of n, again, we see it takes about 1.23 times more iterations. Our studies, at
the moment, are on matrices with dimension up to 3000, and the iteration counts do
appear to be slightly increasing. We expect them to converge to the expected change
in iteration count for larger matrices.

Finally, we verify our findings over a larger space of matrices. To do so, we select
all matrices from the University of Florida collection from n = 500 to n = 10,000
that are symmetric and positive definite. We eliminate any matrices whose condition
numbers are larger than κ = 5× 1015/n, and also those where κ < 50. This results in
a selection of 60 matrices. For each matrix, we compute the condition number ratio
κ′/κ, with k = 20% of n. The results in Figure 5 show that as the raw condition
number κ increases, the change to the condition number κ′ appears to remain bounded
by a small constant. When κ is small, the change can be larger. The worst increase is
for Norris/fv3, which is a finite element mesh on a two-dimensional (2D) plane that
is well conditioned. For matrices with large condition numbers, the worst result is for
HB/nos2, which is again from a finite element problem on a 2D plane. However, this
corresponds to a smaller perturbation than for Norris/fv3.
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Fig. 5. For a large set of positive definite matrices from the University of Florida collection,
the finding that the change in relative change condition number is bounded holds. Each dot and line
shows the maximum condition number ratio and the range as a function of the original condition
number when we add an encoding matrix for 20% of entries failing. These results show that matrices
with small condition number initially tend to exhibit the largest increases.

Table 5
This table shows statistics for the worst change in conditioning that arose in 25 trials on the

UF dataset. So the result in the 1% row of 1.082 shows that for 85% of the 60 matrices, the largest
change observed over 25 trials was less than 1.082. The 95%-tile and max results tend to measure
matrices with small condition numbers as illustrated in Figure 5.

Redundancies κ′/κ

Median 80%-tile 95%-tile Max

1% 1.024 1.082 1.423 1.807
5% 1.070 1.185 1.572 2.001
10% 1.118 1.259 1.713 2.141
20% 1.199 1.371 1.910 2.323

Overall, these experiments point towards a modest increase in iteration counts
resulting from our encoding procedure. The median result over the 60 matrices of the
worst increase over 25 trials is κ′/κ = 1.199, which results in about 10% additional
iterations to encode for 20% redundancies. For 1% redundancies, the median κ′/κ is
1.024, giving an additional 1% iterations. Additional results are presented in Table 5.

8. Future work. This paper introduces erasure-coded linear system solvers, and
provides a proof of concept of its performance and effectiveness. To further develop
the theory and techniques for practically realizing this idea, we plan to explore the
following theoretical and practical directions.
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• Parallel experiments with faults. Our current simulation models the execution
of a parallel CG algorithm with a fixed number of faults in MATLAB. We plan
to design and test in a realistic environment, on real parallel systems, with
either simulated or real-world faults. In particular, an interesting question is
what happens to our method with a fault rate instead of a fixed number of
faults. This will likely introduce some interesting relationships between the
size of the system, the number of steps for convergence, and the fault rate of
the distributed system.

• Improved encoding matrices. Our current design of the encoding matrix
E uses the random Gaussian matrix, which is dense. This results in both
an increase to the number of iterations (as mentioned in section 7) as well
as an increase in per iteration time due to the density. To enhance both
encoding and recovery efficiency, we plan to adopt structured and sparse
random projections (Clarkson et al., 2013, Foucart and Rauhut, 2013, Meng
and Mahoney, 2013), which allow fast matrix-vector multiplications.

• Improved convergence theory. Our current erasure-coded CG adopts the trun-
cation or restart strategy when new faults occur. Our preliminary experiments
indicate that such a strategy may result in slow and wavy convergence when
there are large numbers of faults. We plan to adapt the flexible CG tech-
nique (Notay, 2000) to our erasure-coded CG solver in order to improve its
convergence and to investigate the impact of preconditioning.

• Formal conditioning theory. Finally, there are a number of theoretical questions
about the change in condition numbers that arise as a result of the investigation
in section 7. First, we conjecture that for matrices with a large enough
condition number, using a random Gaussian encoding matrix will enable us
to bound the change in condition number of the encoded system at a value
that is close to 2. Second, we plan to study the conditioning more carefully
to see if the structure of the purified system or the structure of the encoded
system give rise to a more refined conditioning analysis. This will include
understanding how the conditioning changes when a fault occurs and how
we expect the behavior of CG to proceed in this case. Third, we will also
need to extend these results to the new, sparse, encoding matrices discussed
above.

• Whole application study. This paper presents a concept which, at the mo-
ment, applies only to the linear solve step of an application pipeline. A
key study in motivating the use of this idea in practice is a demonstration
of improved performance in a whole-scale application setting for a repre-
sentative scientific problems in computational fluid mechanics, structrual
analysis, or other possible application domains. For instance, Gamell et al.
(2015) consider fault tolerance in the context of the S3D combustion sim-
ulation. The whole application example would provide a setting to fairly
compare our ideas against checkpointing, and to allow us to tune for both
settings.
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